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Abstract
The effects of hydrostatic pressure and growth-direction applied magnetic
fields on the exciton dispersion and in-plane effective mass in coupled GaAs–
(Ga, Al)As quantum wells are investigated. Calculations for spatially direct
and indirect excitons were performed within the variational procedure in the
effective-mass and nondegenerate parabolic band approximations and by taking
into account the coupling between the exciton centre-of-mass momentum and
its internal structure. The pressure coefficient is also obtained as a function of
both the hydrostatic pressure and growth-direction applied magnetic field.

1. Introduction

The exciton properties of semiconductors and related materials have been the subject of a
considerable amount of work in the last few decades. One of the recent motivations for such
studies is the possibility for investigating the exciton properties when the electrons and holes
are confined in different regions of the direct space. The spatial separation of the electron and
hole leads to a small overlap of the single-particle wavefunctions and to a dramatic suppression
of the electron–hole recombination. This fact opens up new possibilities for investigating
many interesting phenomena, such as superfluidity [1] and Bose–Einstein condensation [2]
of excitons in coupled quantum wells (QWs).

The effects of an applied magnetic field on the exciton states in semiconductor
heterostructures have also been widely studied. The magnetic field constitutes an excellent
tool for obtaining valuable experimental and theoretical information on the exciton states.
Since the pioneering work of Gor’kov and Dzyaloshinskiı̆ [3], a great number of experimental
and theoretical studies have been devoted to the understanding of the influence of the exciton
centre-of-mass (CM) momentum on the exciton properties in the cases of direct and indirect
excitons [4–8]. For instance, Paquet et al [4] studied a two-dimensional (2D) electron–hole
fluid in a strong magnetic field by taking into account the influence of the motion of the particles
in the direction perpendicular to the magnetic field. Fritze et al [5] discussed how an in-plane
magnetic field changes the nature of the exciton by inducing a two-body velocity-dependent
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interaction. Butov et al [6] and Lozovik et al [7] carried out the first measurement of the
dispersion of an indirect exciton in a coupled double GaAs−Ga0.67Al0.33As QW heterostructure
under an external magnetic field, and demonstrated that the exciton effective mass, which is
determined by the coupling between the CM motion and internal structure of the exciton,
becomes larger than the sum of the electron and hole masses for high magnetic field values. The
same problem was recently considered by using the variational procedure [8], which leads to an
analytical expression for the exciton effective mass as a function of the applied magnetic field.
Theoretical results were found in fairly good agreement with the experimental measurements
reported by Butov [6] and Lozovik [7].

Another topic which is related to semiconductors and semiconductor heterostructures is
the study of the hydrostatic pressure effects on the electronic band structure as well as on
the properties of impurity and exciton states in QWs, multiple QWs, and superlattices [9–16].
The effects of the hydrostatic pressure modify the semiconductor band structure and lead to
changes in the properties of the elementary excitations of these heterostructure systems. For
example, Samara [9] investigated the effects of temperature and hydrostatic pressure on the
static dielectric constant for a group of crystalline semiconductors. Venkateswaran et al [10]
reported the pressure dependences, from 0 to 70 kbar, of some of the observed transitions in
the photoluminescence (PL) spectra of GaAs–Ga1−x Alx As multiple QW heterostructures, and
studied the lowest exciton energy transition at 8, 80 and 300 K. PL measurements were also
performed on GaAs single QWs as a function of the hydrostatic pressure [11], and related
pressure coefficients were found to decrease with decreasing well width. By introducing a
phenomenological pressure-dependent confining potential, Elabsy [12] studied the effects of
the �–X crossover on the donor binding energies in single QWs. Also, Guha et al [13]
studied the temperature and pressure dependence of type-I and type-II transitions from PL
spectra in GaAs–AlAs superlattices. From the experimental measurements, they found the
parameters describing the temperature dependence of the excitonic transition energies, and
deduced the corresponding broadening of the PL line. The effects of an external electric
field and applied hydrostatic pressure on shallow impurity [14] and exciton [15] states in
semiconductor heterostructures were also investigated, and the transition energies in QWs were
studied by considering the excitonic effects as well as the anisotropy of the valence band [16].

The aim of the present work is to study the effects of the hydrostatic pressure on direct and
indirect excitons in coupled GaAs–(Ga, Al)As QWs under magnetic fields applied along the
growth direction. By taking into account the coupling between the CM momentum and internal
degrees of freedom, we shall investigate how the magnetic field and hydrostatic pressure modify
the exciton dispersion and exciton in-plane effective mass. The present study is performed in
the framework of the effective-mass and nondegenerate parabolic band approximations and
within a variational procedure. The paper is organized as follows. A theoretical analysis for
direct and indirect excitons is given in section 2. Section 3 is concerned with the present
theoretical results and discussion. Conclusions are given in section 4.

2. Theoretical framework

Here we work within the effective-mass and nondegenerate parabolic band approximations.
The exciton Hamiltonian for a semiconductor heterostructure grown along the z axis, and under
hydrostatic pressure � and growth-direction applied magnetic field �B, is given by [8]

Ĥ = 1

2me(�, T )

(
�̂pe + e

c
�Ae

)2 + 1

2mh(�, T )

(
�̂ph − e

c
�Ah

)2

+ Ve(�, T, ze)+ Vh(�, T, zh)− e2

ε(�, T )|�re − �rh| , (1)
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where �̂pe and �̂ph are the momentum operators associated with the electron and hole,
respectively, Ve(�, T, ze) and Vh(�, T, zh) are the pressure- and temperature-dependent
confining potentials for the electron and hole, respectively, and e is the absolute value of
the electron charge. �A(�r) is the vector potential associated with the magnetic field, with
�Ae = �A(�re) and �Ah = �A(�rh). The pressure- and temperature-dependent effective masses
me and mh for the electron and hole, respectively, are given by [6, 16, 17]

me

m0
=

[
1 + E0

(
2

Eg(�, T )
+ 1

Eg(�, T )+�0

)]−1

, (2)

mh

m0
= mh0

m0
+ a1�+ a2�

2, (3)

where m0 is the free-electron mass, mh0
m0

= 0.18, E0 = 7.51 eV, �0 = 0.341 eV, a1 =
−0.1 × 10−3 kbar−1, a2 = 5.56 × 10−6 kbar−2, and

Eg(�, T ) = E0
g + α0�+ β0�

2 + b
T 2

T + c
(4)

is the bulk GaAs band gap, where E0
g is the T = 0 and � = 0 GaAs energy gap (E0

g =
1.519 eV) [17]. The above pressure coefficients were taken as α0 = 10.7 meV kbar−1 and
β0 = −0.0377 meV kbar−2 for GaAs, and the temperature parameters in equation (4) are
chosen as [12] b = −0.5405 meV K−1 and c = 204 K. The low temperature-dependent and
pressure-dependent static dielectric constant is evaluated using the expression [9, 16, 18]

ε = ε0 exp[δ1(T − T0)− δ2�], (5)

where ε0 = 12.74, δ1 = 9.4 × 10−5 K−1, δ2 = 1.67 × 10−3 kbar−1, and T0 = 75.6 K. For
simplicity, both the electron and hole effective masses as well as the dielectric constant have
been considered the same throughout the heterostructure.

Due to the conservation of the in-plane component ( �̂P⊥) of the exciton CM magnetic
momentum [3, 8], the 	(�re, �rh) exciton envelope wavefunction must simultaneously be an

eigenfunction of both Ĥ and �̂P⊥ and, therefore, it may be written as [3]

	(�re, �rh) = exp

[
i

h̄

(�P⊥ + e

2c
�B × �r

)
· �R

]

P⊥(�ρ, ze, zh), (6)

where �r = �re − �rh is the internal exciton coordinate, �ρ = �ρe − �ρh is the in-plane internal
exciton coordinate, �R(�, T ) = 1

M [me�ρe + mh�ρh] is the in-plane exciton CM coordinate, and
M(�, T ) = me + mh is the total exciton mass. Here we have considered the magnetic field
applied along the growth direction and taken the symmetric gauge �A(�r) = 1

2
�B × �r for the

vector potential. As we are interested in both direct and indirect exciton states in deep and
narrow DQW heterostructures, one may model (cf figure 1) the exciton envelope wavefunction
as


P⊥ = ψP⊥(�ρ)δ(z − d), (7)

which may be shown to satisfy

ĥ2DψP⊥(�ρ) = EXψP⊥(�ρ), (8)

where

ĥ2D = p̂2
⊥

2μ
+ eγ

2μc
�B · (�ρ × �̂p⊥)+ e2 B2

8μc2
ρ2 + �F · �ρ − e2

εr
+ P2

⊥
2M

, (9)

EX is the exciton energy, μ = μ(�, T ) is the exciton reduced mass, γ (�, T ) = mh−me
M ,

�̂p⊥ = −ih̄ ∂
∂ �ρ , �F = e

Mc
�P⊥ × �B, r = √

ρ2 + d2, and we take PZ = 0 due to the strong
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Figure 1. Schematic view of the e–h transitions giving rise to the direct and indirect excitons in
the double-quantum-well model used in the present study; the electron and hole either reside in the
same layer (direct exciton) or in layers separated by a distance d (indirect exciton) along the growth
direction.

confinement (cf figure 1). Here d is the pressure-dependent distance between the electron and
hole planes (of course, the direct exciton state is obtained by taking d = 0) and is given by [14]

d = d0[1 − (S11 − 2S12)�], (10)

where d0 is the distance between the electron and hole planes in the absence of hydrostatic
pressure, and S11 and S12 are the compliance constants [19, 20] of GaAs.

For the exciton ground state, one may choose

ψP⊥(�ρ) = N exp

[
i
γ

2h̄
�ρ · �P⊥ − |�ρ − �ρ0|2

4l2
B

]
e−λ[

√
ρ2+d2−d], (11)

where N is a normalization constant, �ρ0 = c
eB2

�B × �P⊥ corresponds to the separation
between the two local minima (one associated with the Coulomb potential and the other with
the magnetic parabolic potential) of the effective potential in which the exciton moves [8],

lB =
√

h̄c
eB is the Landau magnetic length (or cyclotron radius), and λ is a variational parameter

which may be found through the minimization of the functional

EX(λ) = 〈ψP⊥ |ĥ2D|ψP⊥〉
〈ψP⊥ |ψP⊥〉 . (12)

The exciton binding energy may be readily obtained, therefore, as

EB = 1
2 h̄ωc − EX, (13)

where ωc = eB
μ(�,T )c is the cyclotron frequency and EX is the optimized value of the above

functional.

3. Results and discussion

Here we note that two different regimes may be established to distinguish the exciton
behaviours. As mentioned before, the exciton moves in an effective potential with two local
minima separated by the vector [3, 7] �ρ0. One of those minima corresponds to the Coulomb
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Figure 2. Magnetic field dependence of the exciton binding energy for (a) direct and (b) indirect
(d0 = 100 Å) excitons for three different values of the hydrostatic pressure. Results were obtained
for two values of the in-plane CM momentum expressed in reduced units, i.e., p = P⊥

P0
, where

P0 = e2 M(�,T )
ε(�,T )h̄ (see the text).

potential and the other to the magnetic parabolic potential. For �B �= �0 and �P⊥ = �0 or
sufficiently small, the two minima coincide or they are very near, and the exciton properties are
established by the magnetic field and the Coulomb potential. This is the so-called hydrogen-like
regime. On the other hand, as P⊥ = |�P⊥| → ∞, |�ρ0| → ∞, and the properties of the exciton
states are essentially determined by the magnetic parabolic potential [3, 7]. In this case it is
said that the exciton is in the magnetoexciton regime. The transition between the two regimes
takes place at a certain value Ptr of the in-plane CM momentum, which is a function both
of the growth-direction applied magnetic field and hydrostatic pressure. For sufficiently large
values of P⊥, the electron–hole pair becomes more and more polarized due to the increasing
Lorentz force acting separately upon the electron and hole. As a consequence, the Coulomb
attraction between the electron and the hole becomes less important, and the exciton binding
energy tends towards zero. The exciton then behaves as a free and uncorrelated electron–hole
system whose total energy is the sum of the lowest electron and hole Landau-level energies.
On the other hand, for small values of the CM momentum, the effects of the Lorentz force over
the electron–hole pair are weak and the exciton is in the hydrogen-like regime.

In figure 2 we display the exciton binding energy as a function of the applied magnetic field
for two values of p, where p = P⊥

P0
is the in-plane CM momentum in units of P0 = e2 M(�,T )

ε(�,T )h̄ ,
for T = 1.8 K. Solid, dashed, and dotted lines correspond to hydrostatic pressure values of 0,
10 kbar and 20 kbar, respectively. Figures 2(a) and (b) correspond to the direct and the indirect
(with d0 = 100 Å) excitons, respectively. In the zero-CM-momentum limit [6] the exciton
binding energy depends on the magnetic field as

√
B. However, when P⊥ > Ptr an abrupt

change on this dependence is observed, and for sufficiently large values of P⊥ the exciton
binding energy transforms into a linear function of B . One may note that the hydrostatic
pressure effects are more visible in the hydrogen-like regime than in the magnetoexciton
regime.

The hydrostatic pressure dependence of the exciton binding energy is displayed in figure 3
for various values of the applied magnetic field and for T = 1.8 K. Results shown in
figures 3(a) and (b) correspond to p = 0 and p = 1, respectively. Solid and dashed lines are the
theoretical results for direct and indirect (with d0 = 100 Å) excitons, respectively. For given

5
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Figure 3. Exciton binding energies as functions of the hydrostatic pressure for (a) p = 0 and
(b) p = 1, respectively, where p is the in-plane CM momentum in reduced units. Calculations are
performed for direct (dotted curves) and indirect (full curves; d0 = 100 Å) excitons and for three
different values of the growth-direction applied magnetic field.

values of the magnetic field and CM momentum, as the hydrostatic pressure increases, there are
two competitive effects determining the exciton behaviour. On one hand, the dielectric constant
decreases as the pressure is increased, leading to an increase in the Coulomb interaction and
exciton wavefunction confinement, and therefore in the exciton binding energy. On the other
hand, the electron and hole masses as well as the exciton reduced effective mass increase as the
pressure is increased, leading to an increase in the confinement of the single-particle electron
and hole wavefunctions and to a decrease in the e–h overlap, which leads to a decreasing
exciton binding energy. In the hydrogen-like regime the contribution of the Coulomb potential
to the exciton binding energy is more important, and EB behaves as an increasing function
of the hydrostatic pressure. In the magnetoexciton regime, however, the Coulomb interaction
is small, and the exciton behaves like two uncorrelated particles (electron and hole), with a
decreasing binding energy as a function of the hydrostatic pressure. Therefore, the effects of
the hydrostatic pressure result in an increasing binding energy as a function of the pressure in
the hydrogen-like regime (p = 0), whereas in the magnetoexciton regime (p = 1) the exciton
binding energy decreases slowly as the pressure is increased.

The exciton-peak energy (or the exciton energy measured with respect to the top of the
valence band) is also modified by the effects of the hydrostatic pressure and growth-direction
applied magnetic field. For given values of the temperature, in-plane CM momentum and
applied magnetic field, and for low values of�, one may fit the exciton-peak energy as a linear
function of the hydrostatic pressure, i.e.,

EX(�P,�, T, B) = EX(�P, 0, T, B)+ α(�P, T, B)�, (14)

where α is the pressure coefficient which is a function of the in-plane CM momentum as
well as of the magnetic field and temperature. Figure 4 displays the pressure coefficient α
as a function both of the in-plane CM momentum (figures 4(a) and (c)) and of the applied
magnetic field (figures 4(b) and (d)). Calculations in figures 4(a) and (b) were performed
for direct excitons, whereas in figures 4(c) and (d) we have displayed our theoretical results
for indirect excitons with d0 = 100 Å. The magnetoexciton and hydrogen-like regimes
are clearly distinguished. In the magnetoexciton regime, the Coulomb interaction between

6
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Figure 4. Pressure coefficient α ((a) and (c)) as a function of the in-plane CM momentum expressed
in reduced units for three different values of the applied magnetic field, and ((b) and (d)) as a
function of the magnetic field for three different values of the in-plane CM momentum. Results
displayed in (a) and (b) correspond to direct excitons, whereas calculations shown in (c) and (d) are
for indirect excitons.

the electron and hole is negligible, and the pressure-dependent exciton energy is essentially
the sum of the lowest electron and hole Landau-level energies including the GaAs band-gap
energy. Therefore, for a fixed value of the magnetic field in the magnetoexciton regime, the
pressure coefficient depends weakly on the CM momentum, as one may see from figures 4(a)
and (c) for the higher values of p. In addition, for a small value of the magnetic field, α
tends towards α0 in the magnetoexciton regime (cf equation (4)), as expected. In the hydrogen-
like regime, however, the Coulomb interaction plays a relevant role in the exciton behaviour,
leading to a coefficient α slightly smaller than α0. For all values of the CM momentum used
in our calculations, it is apparent from figures 4(b) and (d) that the pressure coefficient α is a
decreasing function of the magnetic field. For p = 0 the exciton remains in the hydrogen-like
regime in the range of magnetic field values considered here, whereas for p = 0.8 the exciton
is in the magnetoexciton regime for all values of B . For intermediate values of the in-plane
CM momentum (p = 0.4), a transition from the magnetoexciton regime to the hydrogen-like
regime takes place (cf figures 4(b) and (d)). Such a transition is more remarkable in the case of
direct excitons, as one may see from figure 4(b).

7



J. Phys.: Condens. Matter 19 (2007) 256202 N Raigoza et al

0 50 100
0.2

0.3

0.4
1.0

1.5

2.0

2.5

B = 0

 direct exciton
 indirect exciton

B = 5 T

B = 10 T

B = 5 T

B = 10 T

Π (kbar)

M
|  

(B
, Π

, T
) /

 m
0

Figure 5. In-plane exciton effective mass M⊥(B,�, T ), where m0 is the free-electron mass, as a
function of the hydrostatic pressure for direct (dotted curves) and indirect (full curves; d0 = 115 Å)
excitons and for three different values of the growth-direction applied magnetic field.

As shown in previous work [8], the exciton energy may be expressed, near �P = �0, as

EX(�P,�, T, B) = EX(�0,�, T, B)+ 1
2 (Px , Py, Pz)M

−1
X

( Px

Py

Pz

)
, (15)

where

M
−1
X =

( M−1
⊥ 0 0
0 M−1

⊥ 0
0 0 M−1

)
(16)

is the inverse of the anisotropic exciton mass, and

M⊥(�, T, B) = M(�, T )

1 − 〈ρ2〉0

2l2
B

(17)

is the in-plane exciton mass, with

〈ρ2〉0 = 〈
P⊥ |ρ2|
P⊥〉|�P⊥=�0. (18)

We have then calculated the in-plane exciton effective mass M⊥(B,�, T ), at T = 1.8 K, as
a function of the hydrostatic pressure and for different values of the growth-direction applied
magnetic field. Results are displayed in figure 5 for both direct and indirect (d0 = 115 Å)
excitons. For B = 0, the in-plane exciton mass has the same value for direct and indirect
excitons (cf equation (17)) and is a growing function of the hydrostatic pressure, as one may
expect from equations (2) and (3). For B = 5 and 10 T and for direct excitons, the in-plane
exciton mass decreases as the pressure is increased until it reaches a local minimum, and then
it increases as the pressure increases. In the indirect exciton case, however, the in-plane exciton
mass under finite values of the applied magnetic field is a decreasing function over the whole
range of the pressure considered in the present calculations.

We have also calculated the in-plane exciton mass as a function of the applied magnetic
field for T = 1.8 K. Results are shown in figure 6 for� = 0 and 100 kbar for direct and indirect
(d0 = 115 Å) excitons. Open circles in figure 6 are the experimental data obtained by Butov
et al and Lozovik et al [6, 7] for an indirect exciton in a GaAs–Ga0.67Al0.33As double-coupled
QW with d0 = 115 Å at T = 1.8 K. One may see that the exciton in-plane effective mass
increases as the magnetic field is increased. For indirect excitons, the effects of the hydrostatic

8
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Figure 6. In-plane exciton effective mass M⊥(B,�, T ), where m0 is the free-electron mass, as a
function of the growth-direction applied magnetic field for direct (dotted curves) and indirect (full
curves; d0 = 115 Å) excitons, and for applied hydrostatic pressure � = 0 and 100 kbar. Open
circles correspond to the experimental results from Butov et al [6] and Lozovik et al [7] in � = 0
coupled GaAs–Ga0.67Al0.33As QWs.

pressure result in a small increase of the exciton in-plane mass for the lowest fields, and in
a weak decrease of the in-plane mass for the largest values of the magnetic field used in the
calculations, whereas for direct excitons, effects of both the applied hydrostatic pressure and
growth-direction magnetic field are quite small. Here we note that the discrepancy between
calculated results for indirect excitons and experimental measurements can probably be solved
by including the effects of the double-coupled QW confining potential in the model calculation.
Moreover, results for the pressure-dependent and magnetic field-dependent exciton in-plane
effective mass may find applications in phenomena such as the Bose–Einstein condensation [2],
as it is well known that the condensation temperature of the bosonic gas depends on the inverse
of the boson mass. In the case of the excitons, because of the exciton-mass values, the critical
temperature [2] at which condensation take places is about 1 K, and, therefore, the present
calculations indicate that, by modifying the magnetic field and/or the hydrostatic pressure, the
condensation temperature of the exciton gas may be modified together with the exciton effective
mass in the semiconductor heterostructure.

4. Conclusions

In summary, we have studied the effects of hydrostatic pressure on the exciton properties of
coupled GaAs–(Ga, Al)As QWs under magnetic fields applied along the growth direction. We
have clearly observed the transition between the hydrogen-like and magnetoexciton regimes
from the magnetic field dependence of the exciton binding energy. Such a transition is also
observable in the behaviour of the pressure coefficients as functions of the applied magnetic
field as well as of the in-plane CM momentum, and it is more remarkable for direct excitons.

In addition, we have investigated the effects of both the hydrostatic pressure and magnetic
fields on the exciton effective mass on spatially direct and indirect excitons in coupled GaAs–
(Ga, Al)As QWs. We have shown that the magnetic field effects on the exciton in-plane
effective mass are stronger than the effects due to the hydrostatic pressure and suggested that the
present theoretical results may have implications for the values of the condensation temperature
of the two-dimensional exciton gas in semiconductor heterostructures.
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[8] Reyes-Gómez E, Oliveira L E and de Dios-Leyva M 2005 Phys. Rev. B 71 045316
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